Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets.
نویسندگان
چکیده
Graphene oxide (GOs) has emerged in recent years as a versatile nanomaterial, demonstrating tremendous potential for multifunctional biomedical applications. GOs can be prepared by the top-down or bottom-up approach, which leads to a great variability of GOs being produced due to the different procedures and starting carbon sources adopted. This will have an effect on the physiochemical properties of GOs and their resultant toxic behavior. In this study, we examined the cytotoxicity of graphene-oxide nanoribbons (GONRs; ∼310 × 5000 nm) and graphene-oxide nanoplatelets (GONPs; 100 × 100 nm), prepared from the oxidative treatment of multi-walled carbon nanotubes (MWCNTs; ∼100 × 5000 nm) and stacked graphene nanofibers (SGNFs; 100 × 5000 nm), respectively. In vitro assessments revealed that the GONRs exhibited a much stronger cytotoxicity over the GONPs, and we correlated that observation with characterization data that showed GONRs to have a greater amount of carbonyl groups as well as greater length. Therefore, we put forward that the stronger toxic behavior of GONRs is a result of the synergistic effect between these two factors, and the type of carbon source used to prepare GOs should be carefully considered in any future bioapplications.
منابع مشابه
Graphene-based contrast agents for photoacoustic and thermoacoustic tomography☆
In this work, graphene nanoribbons and nanoplatelets were investigated as contrast agents for photoacoustic and thermoacoustic tomography (PAT and TAT). We show that oxidized single-and multi-walled graphene oxide nanoribbons (O-SWGNRs, O-MWGNRs) exhibit approximately 5-10 fold signal enhancement for PAT in comparison to blood at the wavelength of 755 nm, and approximately 10-28% signal enhance...
متن کاملHigh catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film
Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxi...
متن کاملNew insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide.
Boron-doped reduced graphene oxide (B-RGO) synthesized by a facile one-step reflux route is able to exhibit significantly higher photocatalytic activity than non-doped RGO under visible light irradiation. New insights accounting for this photocatalytic activity improvement are discussed, which is distinctly different from the case of B-RGO nanoribbons under UV light irradiation.
متن کاملThe effects of graphene nanostructures on mesenchymal stem cells.
We report the effects of two-dimensional graphene nanostructures; graphene nano-onions (GNOs), graphene oxide nanoribbons (GONRs), and graphene oxide nanoplatelets (GONPs) on viability, and differentiation of human mesenchymal stem cells (MSCs). Cytotoxicity of GNOs, GONRs, and GONPs dispersed in distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (DSPE-PEG), on adipose d...
متن کاملFacile hydrothermal preparation of graphene oxide nanoribbons from graphene oxide.
Graphene oxide nanoribbons (GONR) with regular edges have been prepared by a facile hydrothermal method. The relatively high yield and convenient preparation of GONR eventually make graphene nanoribbons (GNR) accessible in the field of composite materials where bulk quantities of nanoribbons are required.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 6 18 شماره
صفحات -
تاریخ انتشار 2014